Apoptosis pathways underlying adipogenesis


Principal Investigator: Niketa A Patel
Abstract: DESCRIPTION (provided by applicant): Obesity continues to escalate as a significant public health problem and as the leading preventable cause of death. Genetic, environmental, behavioral, and socioeconomic factors cause excess weight gain and obesity. Increased proliferation and differentiation of pre-adipocytes to mature adipocytes (adipogenesis) within the fat tissues are central to obesity. Previous studies focused extensively on the transcriptional controls which maintain the adipocyte phenotype. However, the underlying molecular mechanisms that promote determination of primitive mesenchymal precursor cells to the adipose phenotype are still unknown. Our long-term goal is to elucidate the cellular and molecular mechanisms underlying adipogenesis. In pursuit of this goal, our objective is to determine how alternative splicing of apoptotic genes govern the differentiation and maturation of pre-adipocytes. It is well documented that pre-adipocytes undergo apoptosis while mature adipocytes fail to do so. Based on preliminary data, our central hypothesis is that there is a distinct shift in the expression of genes involved in apoptosis from a pro-apoptotic to a pro-survival pathway via alternative splicing controlling terminal adipocyte differentiation which ultimately increases the adipose number and mass leading to obesity. The significance of the proposed research is that once we establish the molecular mechanisms of adipogenesis which result in increased survival of adipocytes, we can manipulate targets of the apoptosis pathway to devise new and innovative approaches to prevent or reverse weight gain and obesity. We propose three specific aims. In Aim 1, we will elucidate whether terminal adipocyte differentiation is accompanied by alternative expression of apoptosis genes. Pre-adipocytes undergo apoptosis unlike mature adipocytes. Our data demonstrate that during adipocyte differentiation between days 4-6, expression of Bcl2 and Bcl-x, caspase 9 and PKC4 alternatively spliced variants change to its pro-survival variants. Using overexpression and knockdown experiments, we will elucidate the link between these genes, adipogenesis and apoptosis. Aim 2 is designed to determine the role of the signaling kinase PKC4II as an anti-adipogenic mediator. PKC4II, a serine/threonine protein kinase promotes cell survival. Natural compounds such as resveratrol and curcumin exhibit anti-adipogenic activities and promote apoptosis in adipocytes. Our data shows that they inhibit PKC4II expression. Our data further points to PKC4II as the signaling kinase upstream of Bcl2-mediated survival pathway. We propose to identify the intracellular target which is central to pro-survival pathways in adipocytes that may be modulated to induce anti-adipogenic effects. In Aim 3 the physiological relevance of this hypothesis will be assessed determining the expression levels of these apoptosis genes in diet-induced obese mouse model (C57BL/6) fed a high-fat diet complemented with the natural compounds or a PKC4II-specific inhibitor. By showing that alternative splicing of apoptotic genes modulate differentiation and maturation of pre-adipocytes, the proposed studies will establish a new paradigm for adipogenesis and reveal new targets for treatment of obesity.
Funding Period: 2012-01-01 - 2015-12-31
more information: NIH RePORT

Research Grants

Detail Information

Research Grants30

  1. Regulation of Metabolism by Dietary Sterols
    ..Some data from animal studies indicate improvement in atherosclerosis, but aggravation of stroke. These studies are important because they may help guide nutritional advice for a very large proportion of the patient population. ..
  2. IL-15 receptor-alpha and IL-15 action in aging skeletal muscle and adipose tissue
    LeBris S Quinn; Fiscal Year: 2013
    ..These studies will provide mechanistic information which could be exploited pharmacologically to modulate body composition and the pathological consequences of sarcopenia and adiposity in the elderly. ..
  3. Cellular and molecular mechanisms of white adipose tissue mass regulation in deve
    Matthew S Rodeheffer; Fiscal Year: 2013
    ..S. being classified as obese today. The goal of this proposal is to identify signals within fat that regulate fat mass, which may lead to the development of novel therapies for the treatment of obesity and obesity-related pathologies. ..
  4. The Center for Native and Pacific Health Disparities Research
    MARJORIE K LEIMOMI MALA MAU; Fiscal Year: 2013
    ..5) To prepare and empower our diverse Native and Pacific People communities to take ownership of their own health and wellness. ..