GENETIC HETEROGENEITY IN HOMOCYSTEINE REMETHYLATION

Summary

Principal Investigator: Barry Shane
Abstract: DESCRIPTION (Adapted from applicant's abstract) Chronic mild hyperhomocysteinemia has been implicated as a risk factor for occlusive vascular disease and genetic variation in folate metabolism has been implicated in the development of this condition. The specific aims of this proposal are: 1) To screen for polymorphisms in genes encoding folate-dependent enzymes involved in homocysteine remethylation and to ascertain which of these polymorphisms potentially contribute to hyperhomocysteinemia in the general population. Genetic differences in DNA samples from subjects at the upper range of plasma homocysteine and those at the lower end of the normal range will be ascertained for the human methionine synthase (MS), methylenetetra-hydrofolate reductase (MTHFR), cytosolic and mitochondrial serine hydroxymethyltransferase (cSHMT, mSHMT) and folypolyglutamate synthetase (FPGS) genes. Simple genetic screening tests will be developed for any polymorphisms associated with hyperhomocysteinemia. 2) To determine the metabolic effects of genetic variations in these genes. The modified proteins will be expressed and purified and their properties characterized. The effects of their expression in tissue culture cells on the regulation of the homocysteine remethylation cycle and on other metabolic cycles of one carbon metabolism will be evaluated. 3) To study the pathological and metabolic effects of disruption of the mouse methionine synthase gene. Mice heterozygous (and possibly homozygous) for a MS knockout will be generated and the effects of the gene disruption on homocysteine levels and remethylation rates, and on fluxes through other cycles of one carbon metabolism, will be ascertained. These animals will also be a valuable and unique model for pernicious anemia allowing an investigation of disturbances of nucleotide and DNA synthesis associated with the condition. The long term goals of the project are to delineate the role of genetic heterogeneity in the development of hyperhomocysteinemia and to understand the mechanisms by which homocysteine hemostasis is regulated. (End of Abstract)
Funding Period: 1997-08-01 - 2001-07-31
more information: NIH RePORT

Top Publications

  1. ncbi Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association
    Valerie B O'Leary
    Department of Biochemistry, Trinity College Dublin, Dublin, Ireland
    Mol Genet Metab 85:220-7. 2005
  2. ncbi Cerebral vascular dysfunction in methionine synthase-deficient mice
    Sanjana Dayal
    Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
    Circulation 112:737-44. 2005
  3. ncbi Polymorphisms in cytoplasmic serine hydroxymethyltransferase and methylenetetrahydrofolate reductase affect the risk of cardiovascular disease in men
    Unhee Lim
    Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
    J Nutr 135:1989-94. 2005

Scientific Experts

  • Barry Shane
  • Kun Peng
  • Valerie B O'Leary
  • Sanjana Dayal
  • Unhee Lim
  • Steven R Lentz
  • Ryan B McCaw
  • Peadar N Kirke
  • John M Scott
  • Scott T Weiss
  • Farbod Raiszadeh
  • James L Mills
  • Faith Pangilinan
  • Teodoro Bottiglieri
  • Andrea Weiler
  • Angela M Devlin
  • Anne Parle-McDermott
  • Anne M Molloy
  • Katherine L Tucker
  • Augusto A Litonjua
  • Frank M Faraci
  • Robert L Strawderman
  • Jacob Selhub
  • Patrick J Stover
  • Christopher Cox
  • Erland Arning
  • Patricia A Cassano
  • J Michael Gaziano
  • Mary Conley
  • Lawrence C Brody
  • Mei Lan Liu

Detail Information

Publications3

  1. ncbi Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association
    Valerie B O'Leary
    Department of Biochemistry, Trinity College Dublin, Dublin, Ireland
    Mol Genet Metab 85:220-7. 2005
    ..The frequencies of I22M and K350R differed significantly between the two groups (p = 0.0005 and p = 0.0001, respectively). Our findings do not support an important role for these MTRR variants in NTDs...
  2. ncbi Cerebral vascular dysfunction in methionine synthase-deficient mice
    Sanjana Dayal
    Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
    Circulation 112:737-44. 2005
    ..We tested the hypothesis that deficiency of MS impairs endothelial function in mice heterozygous for disruption of the Mtr gene, which encodes MS...
  3. ncbi Polymorphisms in cytoplasmic serine hydroxymethyltransferase and methylenetetrahydrofolate reductase affect the risk of cardiovascular disease in men
    Unhee Lim
    Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
    J Nutr 135:1989-94. 2005
    ..A more complete understanding of the molecular mechanism awaits identification of the functional effect of the polymorphism...